当前位置:首页 > 力扣 > 力扣198.打家劫舍|动态规划解法中的特殊边界处理

力扣198.打家劫舍|动态规划解法中的特殊边界处理

7个月前 (05-14)

力扣198.打家劫舍|动态规划解法中的特殊边界处理 力扣 动态规划 C++ 算法 第1张

题意解析:

在排列成直线的房屋群中,每个房屋藏有价值不同的财物。小偷不能连续抢劫相邻的两间房屋,否则会触发警报。我们需要设计一套抢劫策略,使得在不触发警报的前提下,能够获取的最大财物总和。这个问题本质上是在不连续区间内寻找价值最大化的数学组合问题。


思路解析:

采用‌动态规划+特殊边界处理‌策略:

1‌.极端情况处理‌:

    房屋数量≤3时直接比较所有可能的组合结果

    当只有3间房时,最大收益为“首尾之和”或“中间值”的较大者

2.‌DP数组构建‌:

    dp[i]存储前i间房的理论最大收益

    初始化前三个状态:dp[0]存首房价值,dp[1]取前两房较大值,dp[2]对比三种可能性

3‌.递推策略创新‌:

    从第4间房开始,递推式dp[i] = max(dp[i-2]+nums[i], dp[i-3]+nums[i-1])

    不仅考虑前两间的状态,还引入前三间状态的对比,有效避免局部最优陷阱

‌4.最大值维护‌:

    每次计算新的dp[i]后更新全局最大值maxdp

    最终返回遍历过程中出现的最大收益值57


代码注释:

class Solution {
public:
    int rob(vector<int>& nums) {
        // 处理房屋数量少的特殊情况
        if(nums.size()==1) return nums[0];             // 仅一间房直接返回
        if(nums.size()==2) return max(nums[0],nums[1]);// 两间房取较大值
        if(nums.size()==3)                             // 三间房特殊处理
            return max(nums[0]+nums[2],nums[1]);       // 比较首尾之和与中间值

        int dp[100];                                   // DP数组预留足够空间
        dp[0]=nums[0];                                 // 首间房必选
        dp[1]=max(nums[0],nums[1]);                    // 前两间取较大者
        dp[2]=max(nums[0]+nums[2],nums[1]);            // 前三间最优解计算
        int maxdp=dp[2];                               // 初始化当前最大值

        // 动态规划递推过程
        for(int i=3;i<nums.size();i++) {
            // 核心状态转移方程:比较两种跨步方案
            dp[i]=max(dp[i-2]+nums[i],   // 方案一:间隔两间抢当前房
                      dp[i-3]+nums[i-1]);// 方案二:间隔三间抢前一房
            maxdp=max(dp[i],maxdp);      // 动态维护全局最大值
        }
        return maxdp;                    // 返回计算的最高收益
    }
};


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣451:ASCII数组计数法 用128个桶解决频率排序问题

力扣451:ASCII数组计数法 用128个桶解决频率排序问题

题目重解给定一个字符串,将字符按照出现频率降序排列。例如输入"tree",可能返回"eetr"或"eert"。题目要求我们不考虑字母顺序,只...

力扣第92题:三步定位 精准反转链表指定区间

力扣第92题:三步定位 精准反转链表指定区间

题目解读给定一个单链表和两个整数left与right,要求将链表中从第left个节点到第right个节点的部分进行反转,而保持其他部分不变。例如,对于链表1→2→3→4→5,left=2,right=...

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

题目重解我们面对一个经典背包问题的变体:给定n个物品,每个物品有重量w和价值v,背包容量为V。需要回答两个问题:1) 普通情况下能获得的最大价值;2) 必须恰好装满背包时的最大价值(若无法装满则输出0...

IOI 1994 洛谷1216:如何用动态规划高效解决数字三角形问题?附完整代码解析

IOI 1994 洛谷1216:如何用动态规划高效解决数字三角形问题?附完整代码解析

题目重解给定一个由数字组成的三角形结构,从顶部出发,每次可以移动到下方相邻的数字,最终到达底部。我们的目标是找到一条路径,使得路径上经过的数字总和最大。这个问题在实际中有许多应用场景,如最优路径规划、...

力扣965题深度解析:单值二叉树的判断技巧

力扣965题深度解析:单值二叉树的判断技巧

重新解读题目 判断一棵二叉树是否为“单值二叉树”,即所有节点的值是否完全相同。题目看似简单,实则考验对树结构递归特性的理解。若一棵树的所有节点值相同,其必然满足:根节点与左右子树的值一致,且...

力扣540题:线性扫描法如何高效定位唯一数

力扣540题:线性扫描法如何高效定位唯一数

题目重解一个严格递增的有序数组中,除某个元素外,其余每个元素均出现两次。这个看似简单的条件背后隐藏着巧妙的规律——单一元素会打破数组的"成对对称性"。题目要求以O(log n)时间...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。