当前位置:首页 > 力扣 > LeetCode 1690题解:动态规划+前缀和求解区间最大差值(石头游戏VII)

LeetCode 1690题解:动态规划+前缀和求解区间最大差值(石头游戏VII)

5个月前 (07-16)

LeetCode 1690题解:动态规划+前缀和求解区间最大差值(石头游戏VII) 动态规划 前缀和 区间DP 石头游戏VII 力扣题解 C++ 第1张

一、题目解读

力扣1690题“石头游戏VII”(题目名称可能需补充)要求:给定整数数组stones,两人轮流从数组左右两端移除石头,得分等于移除部分的总和减去剩余部分的总和。求先手玩家能获得的最大得分差值。例如,数组[5,3,1,4,2]中,先手若移除左端5,剩余[3,1,4,2],得分5-(3+1+4+2)=5-10=-5,需最大化此差值。题目本质是寻找最优区间分割策略,转化为数学优化问题。

二、解题思路

采用动态规划+前缀和的核心思路,巧妙将区间问题拆解:

1. 前缀和预处理:计算数组前缀和prefix,便于O(1)获取任意区间和(避免重复累加)。

2. 动态规划定义:dp[i][j]表示区间stones[i..j]内的最大得分差值。

3. 状态转移方程:当前玩家可移除左/右端石头,剩余区间由后续玩家操作。例如,移除左端后,剩余和为prefix[j+1]-prefix[i+1](右区间和),则当前差值为该和减去后续玩家在[i+1,j]内的最优得分(即dp[i+1][j])。同理分析右端移除情况,取两者最大值。

4. 边界与递推:从小区间(len=2)逐步扩展至全局,确保子问题已解。

三、解题步骤

1. 计算前缀和:prefix[i+1]=prefix[i]+stones[i],存储0~i元素总和。

2. 初始化DP数组:dp为n×n矩阵,初始值全0(因小区间可能无需分割)。

3. 动态规划循环:

    外层循环:区间长度len=2→n(避免单元素区间无选择)。

    内层循环:枚举起点i,终点j=i+len-1。

    计算移除左/右端后的剩余和leftSum,rightSum,结合对应子区间的dp值,更新dp[i][j]=max(左端策略差值,右端策略差值)。

4. 结果:返回全局区间DP[0][n-1]的最大差值。

四、代码与注释

class Solution {
public:
    int stoneGameVII(vector<int>& stones) {
        int n = stones.size();
        vector<int> prefix(n + 1, 0); // 前缀和数组
        // 计算前缀和
        for (int i = 0; i < n; ++i) {
            prefix[i + 1] = prefix[i] + stones[i];
        }
        
        // dp[i][j]表示在stones[i..j]区间内的最大差值
        vector<vector<int>> dp(n, vector<int>(n, 0));
        
        // 从小区间到大区间逐步计算
        for (int len = 2; len <= n; ++len) {
            for (int i = 0; i + len - 1 < n; ++i) {
                int j = i + len - 1;
                // 移除左边石头后的剩余和
                int leftSum = prefix[j + 1] - prefix[i + 1];
                // 移除右边石头后的剩余和
                int rightSum = prefix[j] - prefix[i];
                
                // 当前玩家选择最大差值策略
                dp[i][j] = max(leftSum - dp[i + 1][j], rightSum - dp[i][j - 1]);
            }
        }
        
        return dp[0][n - 1];
    }
};

注释说明:

● prefix数组避免重复计算区间和,提升效率。

● dp定义确保状态转移的逻辑正确性,外层循环控制区间扩展,内层计算依赖已解子问题。

五、总结

本题通过动态规划将复杂的区间选择问题转化为子问题最优解的组合,前缀和的应用大幅降低计算复杂度。关键在于理解“当前决策影响后续状态”的DP本质,以及如何设计合理的状态转移方程。时间复杂度O(n²),空间复杂度O(n²),可进一步优化为O(n)空间(滚动数组)。掌握此类区间DP思路,对解决类似资源分配、序列优化问题具有重要启发。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣第92题:三步定位 精准反转链表指定区间

力扣第92题:三步定位 精准反转链表指定区间

题目解读给定一个单链表和两个整数left与right,要求将链表中从第left个节点到第right个节点的部分进行反转,而保持其他部分不变。例如,对于链表1→2→3→4→5,left=2,right=...

【深度优先搜索实战】力扣547题:省份数量问题的图论解法

【深度优先搜索实战】力扣547题:省份数量问题的图论解法

题目解读‌我们面对的是一个典型的图论问题:给定一个城市的连接矩阵,需要计算其中相互连通的城市群(省份)数量。这个问题可以抽象为无向图中的连通分量计算,每个城市代表图中的一个节点,城市之间的连接关系代表...

力扣654:递归分治的艺术 如何用最大元素构建二叉树

力扣654:递归分治的艺术 如何用最大元素构建二叉树

题目重解我们面对一个看似简单却充满递归魅力的题目:给定一个不含重复元素的整数数组,需要构建一棵特殊的二叉树。这个树的每个父节点都必须是当前子数组中的最大元素,而它的左右子树则分别由该最大值左侧和右侧的...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

一、题目解读题目要求在一个n×m的网格中,从左上角到右下角选择一条路径,路径上的数字可重复取用,求取数之和的最大值。路径限制为仅能向右或向下移动。需注意路径的灵活性与重复取数的可能性,传统单向动态规划...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。