当前位置:首页 > 牛客 > 牛客12533题解析:动态规划求解最大乘积问题(附代码实现)

牛客12533题解析:动态规划求解最大乘积问题(附代码实现)

5个月前 (07-18)

牛客12533题解析:动态规划求解最大乘积问题(附代码实现) 牛客题解 动态规划 C++ 二维数组 第1张

一、题目解读

牛客12533题要求从n个人中选择k个人,使他们的能力值乘积最大,且相邻两人编号差不超过d。需考虑正负数的乘积组合情况,通过优化算法找到最优解。

二、解题思路

采用动态规划(Dynamic Programming)解决。定义二维数组dp_max[i][j]和dp_min[i][j],分别表示选j个人且最后一个人为i时的最大和最小乘积。通过状态转移方程,利用前j-1个人的乘积与当前能力值计算,兼顾正×正、负×负、正×负三种情况,避免重复计算。

三、解题步骤

1. 初始化:选1人时,乘积即其能力值。

2. 循环处理选j个人(2≤j≤k),当前人i从j到n遍历。

3. 前一个人l在[i-d, i-1]范围内,计算最大/最小乘积:

○ dp_max[i][j] = max(dp_max[l][j-1] * ability[i-1], dp_min[l][j-1] * ability[i-1])

○ dp_min[i][j] = min(dp_max[l][j-1] * ability[i-1], dp_min[l][j-1] * ability[i-1])

4. 最终结果:遍历dp_max[k][i](i=k到n)取最大值。

四、代码与注释

#include <iostream>
#include <vector>
#include <climits>
using namespace std;

long long maxProduct(int n, vector<int>& ability, int k, int d) {
    // dp_max[i][j]表示选j个人,最后一个人是i时的最大乘积
    // dp_min[i][j]表示选j个人,最后一个人是i时的最小乘积
    vector<vector<long long>> dp_max(n+1, vector<long long>(k+1, LLONG_MIN));
    vector<vector<long long>> dp_min(n+1, vector<long long>(k+1, LLONG_MAX));
    
    // 初始化:选1个人时就是自己的能力值
    for(int i = 1; i <= n; i++) {
        dp_max[i][1] = ability[i-1];
        dp_min[i][1] = ability[i-1];
    }
    
    for(int j = 2; j <= k; j++) { // 选j个人
        for(int i = j; i <= n; i++) { // 当前选第i个人
            // 前一个人只能在[i-d, i-1]范围内
            int start = max(j-1, i-d); // 至少需要j-1个人
            for(int l = start; l < i; l++) {
                // 考虑三种情况:正×正,负×负,正×负
                dp_max[i][j] = max(dp_max[i][j], 
                                  max(dp_max[l][j-1] * ability[i-1], 
                                     dp_min[l][j-1] * ability[i-1]));
                dp_min[i][j] = min(dp_min[i][j], 
                                  min(dp_max[l][j-1] * ability[i-1], 
                                     dp_min[l][j-1] * ability[i-1]));
            }
        }
    }
    
    // 找出选k个人时的最大乘积
    long long result = LLONG_MIN;
    for(int i = k; i <= n; i++) {
        result = max(result, dp_max[i][k]);
    }
    return result;
}

int main() {
    int n, k, d;
    cin >> n;
    vector<int> ability(n);
    for(int i = 0; i < n; i++) cin >> ability[i];
    cin >> k >> d;
    
    cout << maxProduct(n, ability, k, d) << endl;
    return 0;
}

五、总结

本解法通过动态规划将复杂问题分解为子问题,利用状态转移优化时间复杂度。关键在于处理正负数的乘积逻辑,确保最终结果正确。代码结构清晰,注释明确,适用于同类最大乘积问题的参考与学习。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣1221:一次扫描解决分割平衡字符串 时间O(n)空间O(1)

力扣1221:一次扫描解决分割平衡字符串 时间O(n)空间O(1)

题目重解给定一个仅包含'L'和'R'的字符串,要求将其分割成尽可能多的子串,且每个子串中'L'和'R'的数量相等。例如输入"R...

力扣35:二分法在搜索插入位置中的运用

力扣35:二分法在搜索插入位置中的运用

有序数组的定位在一个严格递增的数字序列中,每个元素都有其确定的位置。当新元素试图加入时,我们需要回答两个问题:它是否已经存在?如果不存在,它应该插入在哪里?这道题要求我们在O(log n)时间内完成这...

【动态规划入门】力扣509题:斐波那契数列的经典解法与优化思路

【动态规划入门】力扣509题:斐波那契数列的经典解法与优化思路

题目解读‌斐波那契数列是一个经典的数学问题,在计算机科学中常被用作算法教学的入门案例。这个神奇的数列从0和1开始,后续每个数字都是前两个数字之和。题目要求我们计算第n个斐波那契数,看似简单的问题背后却...

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

一、题目解读小杨买饮料是GESP 2023年六级认证考试中的一道经典动态规划题目,考察学生对背包问题的理解和应用能力。题目描述小杨需要购买n种饮料,每种饮料有特定的体积w和价格v,他要在不超过容量l的...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。