当前位置:首页 > 蓝桥杯 > 【蓝桥杯省赛】2014年A组波动数列题解:动态规划解法与代码解析(C++实现)

【蓝桥杯省赛】2014年A组波动数列题解:动态规划解法与代码解析(C++实现)

3周前 (06-29)

【蓝桥杯省赛】2014年A组波动数列题解:动态规划解法与代码解析(C++实现) 蓝桥杯省赛  动态规划 算法优化 第1张

一、题目解读

“波动数列”是2014年蓝桥杯省赛A组的一道经典题目。题目要求生成一个数列,其前n项的和模n等于给定值s,且每项只能通过加减固定值a、b波动。问题本质是求解满足特定模运算条件的数列组合方案数,涉及数学递推组合计数,需转化为算法模型求解。

二、解题思路

采用动态规划(Dynamic Programming)解决该问题。核心思想是定义状态转移方程,通过递推计算前i项的和模n的方案数。关键点如下:

    1. 状态定义:dp[i][j]表示前i项的和模n等于j的方案数。

    2. 边界条件:初始状态dp[0][0] = 1(0项和为0的唯一方案)。

    3. 状态转移:当前项可加减a、b,因此第i项的和由前i-1项推导:dp[i][j] = dp[i-1][j-ai] + dp[i-1][j+bi],需通过取模处理负数与溢出。

    4. 优化细节:自定义mod函数处理负数取模,避免直接运算的边界问题;使用MOD常数防止结果溢出。

三、解题步骤

1. 输入参数:读取n(项数)、s(目标模值)、a、b(波动值)。

2. 初始化DP数组:创建n×n的dp矩阵,初始状态dp[0][0]设为1。

3. 循环递推:

    外层循环i从1到n-1,逐层扩展项数。

    内层循环j遍历模n的所有可能值(0到n-1)。

    状态转移时,通过mod函数处理加减a、b后的模值,累加前状态的方案数。

4. 输出结果:最终方案数为dp[n-1][s mod n],即n项满足条件的组合数。

四、代码与注释

#include <iostream>
#include <vector>
using namespace std;

const int MOD = 100000007; // 溢出保护常数

// 自定义取模函数处理负数(关键优化)
inline int mod(int x, int n) {
    return (x % n + n) % n; // 将负数转正后再取模
}

int main() {
    int n, s, a, b; // 输入参数
    cin >> n >> s >> a >> b;
    
    // dp[i][j]:前i项的和模n等于j的方案数
    vector<vector<int>> dp(n, vector<int>(n, 0));
    dp[0][0] = 1; // 初始状态:0项和为0有1种方案
    
    for (int i = 1; i < n; i++) { // 递推项数
        for (int j = 0; j < n; j++) { // 遍历模值
            // 状态转移:当前项可+a或-b(需处理负数模运算)
            dp[i][j] = (dp[i-1][mod(j - a*i, n)] + dp[i-1][mod(j + b*i, n)]) % MOD;
        }
    }
    
    // 输出结果:n项满足s mod n的方案数
    cout << dp[n-1][mod(s, n)] << endl;
    return 0;
}

五、总结

该解法巧妙将数学问题转化为动态规划模型,通过状态压缩与优化取模运算,高效求解组合计数问题。代码亮点在于负数处理细节与MOD常数的防溢出设计,体现了算法竞赛中“边界条件优化”的重要性。动态规划思路适用于类似递推求和问题,值得算法学习者深入理解与实践。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣70题:告别暴力递归!从零实现记忆化搜索解法

力扣70题:告别暴力递归!从零实现记忆化搜索解法

题意解析:想象你站在楼梯底部,面前有n级台阶。每次你可以选择跨1级或2级台阶,最终到达顶端的路径有多少种不同的走法?这个问题本质上是在探索分叉决策的叠加效果——当我们把每个台阶处的选择看作二叉树的分支...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

一、题目解读牛客12576题是一道经典的算法题,要求给定起点N和终点M,求解从N到M的最少跳跃次数。题目考察的核心在于路径优化与动态规划思想,需结合数论中的质因数分解技巧,通过合理设计算法降低时间复杂...

2024蓝桥杯省赛B组“传送阵”题解(C++代码+图论算法优化)

2024蓝桥杯省赛B组“传送阵”题解(C++代码+图论算法优化)

一、题目解读2024年蓝桥杯省B组“传送阵”题目要求处理一个包含n个节点的图,节点间存在单向传输关系。每个节点i可传送至a[i]指定的节点,形成可能存在的环结构。题目需求解从任意节点出发能到达的最长路...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。