当前位置:首页 > 牛客 > 牛客14487题解析:动态规划解决最小字符串翻转问题(附代码详解)

牛客14487题解析:动态规划解决最小字符串翻转问题(附代码详解)

3周前 (06-25)

牛客14487题解析:动态规划解决最小字符串翻转问题(附代码详解) 动态规划 字符串翻转 最小翻转次数  第1张

一、题目解读

牛客14487题要求给定一个仅包含字符 'R' 和 'G' 的字符串,通过翻转操作(将字符 'R' 变为 'G' 或反之)使其满足:所有字符相同,且相邻字符不同。需要求出最小翻转次数。题目本质是寻找一种优化策略,在限制条件下实现状态转换的最小代价。

二、解题思路:动态规划

1. 状态定义:使用二维DP数组 dp[i][j],其中 dp[i][0] 表示前 i 个字符全部为 'R' 的最小翻转次数,dp[i][1] 表示前 i 个字符全部为 'G' 的最小次数。

2. 边界条件:首字符需根据当前状态判断是否需要翻转(例如,若首字符为 'G' 但要求全 'R',则翻转一次)。

3. 状态转移

    若当前字符为 'R',前一个字符必须为 'G'(否则需翻转),因此 dp[i][0] = dp[i-1][1] + (s[i]!= 'R');

    若当前字符为 'G',前一个字符可为 'R' 或 'G',取两者中较小值:dp[i][1] = min(dp[i-1][0], dp[i-1][1]) + (s[i]!= 'G')。

4. 最终结果:取末尾字符为 'R' 或 'G' 的最小值,即 min(dp[n-1][0], dp[n-1][1])。

三、解题步骤

1. 初始化:创建 dp[n][2] 数组,根据首字符状态计算初始值。

2. 循环处理每个字符:

    根据当前字符与目标状态(全 'R' 或 'G')判断是否需要翻转,更新对应 dp 值。

    利用前一个状态的最优解推导当前状态。

3. 返回最终结果:比较 dp[n-1][0] 和 dp[n-1][1] 并取最小值。

四、代码与注释

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int minFlips(string s) {
    int n = s.size();
    // dp[i][0]表示第i个字符为R时的最小操作次数
    // dp[i][1]表示第i个字符为G时的最小操作次数
    vector<vector<int>> dp(n, vector<int>(2, 0));
    
    // 初始化第一个字符
    dp[0][0] = (s[0]!= 'R'); // 如果是G需要翻转
    dp[0][1] = (s[0]!= 'G'); // 如果是R需要翻转
    
    for (int i = 1; i < n; ++i) {
        // 当前字符为R时,前一个字符只能是R
        dp[i][0] = dp[i-1][1] + (s[i]!= 'R');
        // 当前字符为G时,前一个字符可以是R或G
        dp[i][1] = min(dp[i-1][0], dp[i-1][1]) + (s[i]!= 'G');
    }
    
    // 最终结果取最后一位是R或G的最小值
    return min(dp[n-1][0], dp[n-1][1]);
}

int main() {
    string s;
    cin >> s;
    cout << minFlips(s) << endl;
    return 0;
}

注释说明:

● 使用动态规划避免重复计算,通过状态转移方程优化时间复杂度。

● 边界处理确保首字符符合初始状态要求。

● 循环中利用前缀状态信息更新当前状态,保证最优性。

五、总结

本题通过动态规划将问题拆解为局部最优决策的组合,关键在于定义状态转移方程时满足题目约束(相邻字符不同)。通过明确边界条件和状态依赖关系,可高效求解最小翻转次数。该解法时间复杂度为 O(n),空间复杂度为 O(n),适用于中等规模字符串问题。


链接:动态规划

原创内容 转载请注明出处

分享给朋友:

相关文章

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

题目重解我们面对一个经典背包问题的变体:给定n个物品,每个物品有重量w和价值v,背包容量为V。需要回答两个问题:1) 普通情况下能获得的最大价值;2) 必须恰好装满背包时的最大价值(若无法装满则输出0...

IOI 1994 洛谷1216:如何用O(1)空间解决数字三角形问题?附代码实现

IOI 1994 洛谷1216:如何用O(1)空间解决数字三角形问题?附代码实现

题目重解:数字三角形是一个经典的动态规划问题,给定一个由数字组成的三角形结构,从顶部出发,每次可以移动到下方相邻的数字,最终到达底部。我们需要找到一条路径,使得路径上经过的数字总和最大。这个问题可以很...

【动态规划入门】力扣509题:斐波那契数列的经典解法与优化思路

【动态规划入门】力扣509题:斐波那契数列的经典解法与优化思路

题目解读‌斐波那契数列是一个经典的数学问题,在计算机科学中常被用作算法教学的入门案例。这个神奇的数列从0和1开始,后续每个数字都是前两个数字之和。题目要求我们计算第n个斐波那契数,看似简单的问题背后却...

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

一、题目解读题目要求在一个n×m的网格中,从左上角到右下角选择一条路径,路径上的数字可重复取用,求取数之和的最大值。路径限制为仅能向右或向下移动。需注意路径的灵活性与重复取数的可能性,传统单向动态规划...

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

一、题目解读牛客12576题是一道经典的算法题,要求给定起点N和终点M,求解从N到M的最少跳跃次数。题目考察的核心在于路径优化与动态规划思想,需结合数论中的质因数分解技巧,通过合理设计算法降低时间复杂...

NOIP 2008火柴棒等式题解(C++代码实现)  动态规划与枚举算法详解

NOIP 2008火柴棒等式题解(C++代码实现) 动态规划与枚举算法详解

一、题目解读火柴棒等式问题(NOIP 2008,洛谷P1149)要求使用给定数量的火柴棒,构造形如 A + B = C 的等式,其中A、B、C均为整数,且火柴棒总数恰好等于输入值。需统计符合条件的等式...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。