当前位置:首页 > 提高组 > 【NOIP提高组2003】神经网络(洛谷P1038)题解:拓扑排序与动态规划的应用

【NOIP提高组2003】神经网络(洛谷P1038)题解:拓扑排序与动态规划的应用

6天前

【NOIP提高组2003】神经网络(洛谷P1038)题解:拓扑排序与动态规划的应用 NOIP提高组  拓扑排序 动态规划 第1张

一、题目解读

2003年NOIP提高组中的“神经网络”题目(洛谷P1038)要求处理一个由神经元和带权有向边构成的网络。题目给定神经元的初始状态、阈值,以及神经元之间的连接关系,需要模拟信号传递过程,并输出最终状态。核心在于解决信号传递的顺序和条件判断,涉及到图论算法的应用。

二、解题思路

采用拓扑排序为核心思路,将神经网络抽象为有向无环(DAG)。关键在于处理节点的入度和状态更新:

1. 利用拓扑排序确定节点处理顺序,保证每个节点仅在其所有前驱节点处理后被访问;

2. 通过邻接表存储边信息,动态维护节点的入度和状态;

3. 节点传递信号的条件是其状态大于阈值,且传递权重影响后续节点状态。

三、解题步骤

1. 数据输入与初始化:读入神经元数量n、边数p,初始化神经元状态、阈值及邻接表;

2. 构建图结构:根据边信息更新入度,标记输出层节点;

3. 拓扑排序预处理:将入度为0的节点加入队列,并调整非输入层节点状态(减去阈值);

4. 拓扑排序迭代

○ 弹出队首节点,若状态≤0则不传递信号;

○ 否则向邻接点传递信号(状态加权更新),并递减其入度,若入度为0则加入队列;

5. 输出结果:最终状态即为输出层节点的状态。

四、代码与注释

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

// 定义神经元结构体
struct Neuron {
    int c;      // 当前状态
    int u;      // 阈值
    int in_degree;  // 入度
    bool is_output; // 是否为输出层神经元
};

int main() {
    int n, p;
    cin >> n >> p;
    
    vector<Neuron> neurons(n+1); // 神经元数组,从1开始编号
    vector<vector<pair<int, int>>> adj(n+1); // 邻接表,存储边和权重
    
    // 输入神经元初始状态和阈值
    for (int i = 1; i <= n; ++i) {
        cin >> neurons[i].c >> neurons[i].u;
        neurons[i].is_output = true; // 初始假设所有神经元都是输出层
    }
    
    // 输入边信息并构建邻接表
    for (int i = 0; i < p; ++i) {
        int from, to, w;
        cin >> from >> to >> w;
        adj[from].emplace_back(to, w);
        neurons[to].in_degree++; // 目标节点入度增加
        neurons[from].is_output = false; // 有出边的节点不是输出层
    }
    
    // 拓扑排序队列,初始化时加入所有入度为0的节点
    queue<int> q;
    for (int i = 1; i <= n; ++i) {
        if (neurons[i].in_degree == 0) {
            q.push(i);
        } else {
            // 非输入层神经元需要减去阈值
            neurons[i].c -= neurons[i].u;
        }
    }
    
    // 拓扑排序处理
    while (!q.empty()) {
        int current = q.front();
        q.pop();
        
        // 如果当前神经元状态<=0,不传递信号
        if (neurons[current].c <= 0) {
            for (auto &edge : adj[current]) {
                int next = edge.first;
                if (--neurons[next].in_degree == 0) {
                    q.push(next);
                }
            }
            continue;
        }
        
        // 向所有邻接神经元传递信号
        for (auto &edge : adj[current]) {
            int next = edge.first;
            int weight = edge.second;
            neurons[next].c += weight * neurons[current].c;
            
            // 入度减为0时加入队列
            if (--neurons[next].in_degree == 0) {
                q.push(next);
            }
        }
    }
    
    // 收集输出层神经元结果
    bool has_output = false;
    for (int i = 1; i <= n; ++i) {
        if (neurons[i].is_output && neurons[i].c > 0) {
            cout << i << " " << neurons[i].c << endl;
            has_output = true;
        }
    }
    
    if (!has_output) {
        cout << "NULL" << endl;
    }
    
    return 0;
}

五、总结

该解法巧妙将神经网络转化为拓扑排序问题,通过动态规划思想维护节点状态,避免了复杂的递归深度优先搜索。关键在于利用入度控制节点处理顺序,确保信号传递的正确性。代码简洁高效,是解决此类图论问题的经典范例。

原创内容 转载请注明出处

分享给朋友:

相关文章

力扣70题:告别暴力递归!从零实现记忆化搜索解法

力扣70题:告别暴力递归!从零实现记忆化搜索解法

题意解析:想象你站在楼梯底部,面前有n级台阶。每次你可以选择跨1级或2级台阶,最终到达顶端的路径有多少种不同的走法?这个问题本质上是在探索分叉决策的叠加效果——当我们把每个台阶处的选择看作二叉树的分支...

70.爬楼梯|三步破解动态规划核心奥秘

70.爬楼梯|三步破解动态规划核心奥秘

题意新解:站在楼梯底仰望n级台阶,每步可选1或2阶,最终的路径组合犹如斐波那契数列般展开。比如到达第3阶的路径可由第1阶跨两步,或第2阶跨一步构成,这种递推规律揭示了两两相邻状态间的紧密关联。思路解析...

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

题目重解我们面对一个经典背包问题的变体:给定n个物品,每个物品有重量w和价值v,背包容量为V。需要回答两个问题:1) 普通情况下能获得的最大价值;2) 必须恰好装满背包时的最大价值(若无法装满则输出0...

IOI 1994 洛谷1216:如何用O(1)空间解决数字三角形问题?附代码实现

IOI 1994 洛谷1216:如何用O(1)空间解决数字三角形问题?附代码实现

题目重解:数字三角形是一个经典的动态规划问题,给定一个由数字组成的三角形结构,从顶部出发,每次可以移动到下方相邻的数字,最终到达底部。我们需要找到一条路径,使得路径上经过的数字总和最大。这个问题可以很...

NOIP 2008火柴棒等式题解(C++代码实现)  动态规划与枚举算法详解

NOIP 2008火柴棒等式题解(C++代码实现) 动态规划与枚举算法详解

一、题目解读火柴棒等式问题(NOIP 2008,洛谷P1149)要求使用给定数量的火柴棒,构造形如 A + B = C 的等式,其中A、B、C均为整数,且火柴棒总数恰好等于输入值。需统计符合条件的等式...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。