当前位置:首页 > 力扣 > 力扣2012题:使用动态规划解决数组美丽值求和

力扣2012题:使用动态规划解决数组美丽值求和

1个月前 (08-06)

力扣2012题:使用动态规划解决数组美丽值求和 力扣题解 动态规划 C++ 第1张

一、题目解读

力扣2012题要求计算数组中所有“美丽数”的总和。美丽数定义为:数组中满足“中间元素同时大于左右相邻元素”或“中间元素同时小于左右相邻元素”的数值。例如,[3,1,2,4]中,1和2均为美丽数,总和为3。

二、解题思路

采用动态规划预处理极值的解法,核心思想:

1. 预处理左右极值:

○ 计算每个位置左侧的最大值(left_max),从前往后遍历,更新当前位置的最大值;

○ 计算每个位置右侧的最小值(right_min),从后往前遍历,更新当前位置的最小值。

2. 遍历中间元素:

○ 若中间元素同时大于left_max和小于right_min,则为严格美丽数,贡献2分;

○ 若中间元素仅满足“山谷”或“山峰”(即两侧相邻元素递增或递减),贡献1分。

3. 累加所有贡献得到总和。

关键在于通过预处理减少重复比较,将O(n^2)复杂度降为O(n)。

三、解题步骤

1. 预处理左侧最大值left_max:

○ 初始化left_max[0] = nums[0],即第一个元素为左侧最大值;

○ 遍历i=1至n-1,更新left_max[i] = max(left_max[i-1], nums[i])。

2. 预处理右侧最小值right_min:

○ 初始化right_min[n-1] = nums[n-1],即最后一个元素为右侧最小值;

○ 逆序遍历i=n-2至0,更新right_min[i] = min(right_min[i+1], nums[i])。

3. 计算美丽值总和:

○ 遍历i=1至n-2(中间元素),分情况累加:

■ 若nums[i] > left_max[i-1]且nums[i] < right_min[i+1],贡献2分;

■ 若nums[i-1] < nums[i]且nums[i] > nums[i+1](山谷),或反之(山峰),贡献1分。

4. 返回总分数res。

四、代码与注释

class Solution {
public:
    int sumOfBeauties(vector<int>& nums) {
        int n = nums.size();
        vector<int> left_max(n), right_min(n);
        
        // 预处理左边最大值
        left_max[0] = nums[0];
        for (int i = 1; i < n; ++i) {
            left_max[i] = max(left_max[i-1], nums[i]);
        }
        
        // 预处理右边最小值
        right_min[n-1] = nums[n-1];
        for (int i = n-2; i >= 0; --i) {
            right_min[i] = min(right_min[i+1], nums[i]);
        }
        
        int res = 0;
        // 计算每个中间元素的美丽值
        for (int i = 1; i < n-1; ++i) {
            if (left_max[i-1] < nums[i] && nums[i] < right_min[i+1]) {
                res += 2;
            } else if (nums[i-1] < nums[i] && nums[i] < nums[i+1]) {
                res += 1;
            }
        }
        return res;
    }
};

注释说明:

● left_max[i] = max(...):动态规划核心,确保每个位置记录左侧最大极值;

● if (left_max[i-1] < nums[i]...:通过预处理结果直接判断美丽数类型,无需重复比较。

五、总结

本文通过动态规划预处理左右极值,高效求解美丽数总和。核心优势在于:

1. 空间换时间:通过O(n)预处理避免O(n^2)比较;

2. 清晰的分情况讨论:严格美丽数与“山谷/山峰”贡献不同分值;

3. 简洁代码实现,无需额外数据结构

算法时间复杂度O(n),空间复杂度O(n),为数组优化问题的典型解法,适用于需要高效处理局部极值的场景,适合算法竞赛与编程学习参考。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣451:ASCII数组计数法 用128个桶解决频率排序问题

力扣451:ASCII数组计数法 用128个桶解决频率排序问题

题目重解给定一个字符串,将字符按照出现频率降序排列。例如输入"tree",可能返回"eetr"或"eert"。题目要求我们不考虑字母顺序,只...

力扣933题:队列的妙用:如何高效统计最近请求

力扣933题:队列的妙用:如何高效统计最近请求

题目重解:我们需要设计一个能统计最近3000毫秒内请求次数的系统。每当新的请求到来时,它会带有时间戳t,我们需要返回过去3000毫秒内(包括当前)发生的请求总数。这就像是在时间轴上维护一个滑动窗口,只...

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

一、题目解读小杨买饮料是GESP 2023年六级认证考试中的一道经典动态规划题目,考察学生对背包问题的理解和应用能力。题目描述小杨需要购买n种饮料,每种饮料有特定的体积w和价格v,他要在不超过容量l的...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

手搓顺序表类代码注释与详解:从零实现动态数组(新手教程)

一、简介和特点顺序表(Sequential List)是数据结构中基础的一种线性表,其特点是将数据元素存储在连续的内存空间中。通过数组实现,支持随机访问(即通过索引直接访问元素),适用于频繁随机读取的...

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

一、题目解读题目要求在一个n×m的网格中,从左上角到右下角选择一条路径,路径上的数字可重复取用,求取数之和的最大值。路径限制为仅能向右或向下移动。需注意路径的灵活性与重复取数的可能性,传统单向动态规划...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。