当前位置:首页 > 入门组 > NOIP2005 普及组 洛谷P1408 背包问题的空间优化技巧与实战应用

NOIP2005 普及组 洛谷P1408 背包问题的空间优化技巧与实战应用

4个月前 (05-22)

NOIP2005 普及组 洛谷P1408 背包问题的空间优化技巧与实战应用 洛谷 NOIP  动态规划 01背包 C++ 算法 第1张

题目重解

想象你是一名药师,有t分钟在山上采集m种草药。每种草药需要time分钟采集,价值为num。这就像考试时分配时间做题,要选择收益最大的题目组合。题目要求计算在规定时间内能获得的最大草药价值。

解题思路

代码实现分为三个阶段:

初始化阶段:创建dp数组表示各时间段的最优解,初始值为0(未采集任何草药的状态)

动态转移阶段:对每种草药逆序更新dp数组,确保每种草药只被计算一次。状态转移方程dp[j] = max(保持原状, 采集当前草药)体现了取舍决策

输出结果:直接读取dp[t]即为时间上限下的最优解

代码注释版

#include<iostream>
using namespace std;
int main()
{
    int t,m;  // 总时间t分钟,草药种类m
    cin>>t>>m;
    
    int* dp=new int[t+1]; // dp数组:dp[j]表示j分钟内的最大价值
    int time,num;  // 当前草药的采集时间和价值
    
    for(int i=0;i<m;i++){  // 遍历每种草药
        cin>>time>>num;
        // 逆序更新防止重复采集
        for(int j=t;j>=time;j--)  
            dp[j]=max(dp[j], dp[j-time]+num); // 经典状态转移
    }
    cout<<dp[t];  // 输出最终结果
    
    return 0;
}


原创内容 转载请注明出处

分享给朋友:

相关文章

70.爬楼梯|三步破解动态规划核心奥秘

70.爬楼梯|三步破解动态规划核心奥秘

题意新解:站在楼梯底仰望n级台阶,每步可选1或2阶,最终的路径组合犹如斐波那契数列般展开。比如到达第3阶的路径可由第1阶跨两步,或第2阶跨一步构成,这种递推规律揭示了两两相邻状态间的紧密关联。思路解析...

力扣654:递归分治的艺术 如何用最大元素构建二叉树

力扣654:递归分治的艺术 如何用最大元素构建二叉树

题目重解我们面对一个看似简单却充满递归魅力的题目:给定一个不含重复元素的整数数组,需要构建一棵特殊的二叉树。这个树的每个父节点都必须是当前子数组中的最大元素,而它的左右子树则分别由该最大值左侧和右侧的...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

手搓顺序表类代码注释与详解:从零实现动态数组(新手教程)

一、简介和特点顺序表(Sequential List)是数据结构中基础的一种线性表,其特点是将数据元素存储在连续的内存空间中。通过数组实现,支持随机访问(即通过索引直接访问元素),适用于频繁随机读取的...

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

一、题目解读牛客12576题是一道经典的算法题,要求给定起点N和终点M,求解从N到M的最少跳跃次数。题目考察的核心在于路径优化与动态规划思想,需结合数论中的质因数分解技巧,通过合理设计算法降低时间复杂...

NOIP 2008火柴棒等式题解(C++代码实现)  动态规划与枚举算法详解

NOIP 2008火柴棒等式题解(C++代码实现) 动态规划与枚举算法详解

一、题目解读火柴棒等式问题(NOIP 2008,洛谷P1149)要求使用给定数量的火柴棒,构造形如 A + B = C 的等式,其中A、B、C均为整数,且火柴棒总数恰好等于输入值。需统计符合条件的等式...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。