当前位置:首页 > 力扣 > 力扣912排序题终极解法:递归分割 + 双指针合并详解

力扣912排序题终极解法:递归分割 + 双指针合并详解

2个月前 (05-12)

题目解读

给定一个整数数组,要求将其按升序排列并返回。题目通常隐含对算法时间复杂度的要求,理想情况下需实现 O(n log n) 的时间复杂度。本题看似简单,但需要选择合适的排序算法(如归并排序、快速排序等),且需避免直接调用语言内置的排序函数。提供的代码通过归并排序的分治思想解决了这一问题,通过递归分割数组并合并有序子数组完成排序。


力扣912排序题终极解法:递归分割 + 双指针合并详解 C++ 算法 力扣 数组 归并排序 双指针 第1张


解题思路与过程

采用经典的归并排序算法实现排序,主要分为以下步骤:

1.递归分割数组‌:将数组不断二分,直到子数组长度为1(即递归终止条件 l == r)。

2.合并有序子数组‌:将两个已排序的子数组合并为一个有序数组。合并时使用双指针遍历左右子数组的元素,依次选择较小的值存入临时数组 tmp,最终将 tmp 的结果覆盖原数组的对应区间。

3.临时数组的利用‌:在合并过程中,通过全局临时数组 tmp[50000] 保存合并结果,避免多次动态内存分配


代码:

class Solution {  
public:  
    int tmp[50000];  // 全局临时数组,用于合并过程中的中间存储  
    void mysort(vector<int>& nums, int l, int r) {  
        if (l == r) {  // 递归终止条件:子数组长度为1  
            return;  
        }  
        int mid = (l + r) / 2;  
          
        // 递归分割左半部分  
        mysort(nums, l, mid);  
        // 递归分割右半部分  
        mysort(nums, mid + 1, r);  
          
        int index = l;    // 合并结果的起始位置  
        int lnow = l;     // 左子数组的指针  
        int rnow = mid + 1;  // 右子数组的指针  
          
        // 合并左右子数组  
        while (lnow <= mid || rnow <= r) {  
            if (rnow > r) {  // 右子数组已遍历完,直接填充左子数组剩余元素  
                tmp[index] = nums[lnow];  
                lnow++;  
                index++;  
            } else if (lnow > mid) {  // 左子数组已遍历完,填充右子数组剩余元素  
                tmp[index] = nums[rnow];  
                rnow++;  
                index++;  
            } else {  
                // 选择左右子数组中较小者放入临时数组  
                tmp[index] = min(nums[lnow], nums[rnow]);  
                if (nums[lnow] < nums[rnow]) {  
                    lnow++;  
                } else {  
                    rnow++;  
                }  
                index++;  
            }  
        }  
        // 将临时数组结果覆盖到原数组  
        for (int i = l; i <= r; i++) {  
            nums[i] = tmp[i];  
        }  
    }  
      
    vector<int> sortArray(vector<int>& nums) {  
        mysort(nums, 0, nums.size() - 1);  
        return nums;  
    }  
};


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣LCR182:字符串操作三连 从基础拼接到底层指针优化

力扣LCR182:字符串操作三连 从基础拼接到底层指针优化

题目重解需要将密码字符串从第target个字符开始进行重新排列,形成新的动态密码。例如输入"password"和target=3,结果应为"swordpas"。...

力扣94:递归之美 轻松掌握二叉树中序遍历

力扣94:递归之美 轻松掌握二叉树中序遍历

题目解读二叉树的中序遍历是一种基础且重要的树遍历方式,其遍历顺序为:先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。对于二叉搜索树,中序遍历的结果恰好是节点值的升序排列。给定一个二叉...

手搓顺序表类代码注释与详解:从零实现动态数组(新手教程)

一、简介和特点顺序表(Sequential List)是数据结构中基础的一种线性表,其特点是将数据元素存储在连续的内存空间中。通过数组实现,支持随机访问(即通过索引直接访问元素),适用于频繁随机读取的...

力扣第44题:寻找两个正序数组的中位数 - 合并排序解法详解

力扣第44题:寻找两个正序数组的中位数 - 合并排序解法详解

内容简介本文详细解析了力扣第44题"寻找两个正序数组的中位数"的合并排序解法。通过双指针技术合并两个有序数组,然后直接计算合并后数组的中位数。虽然时间复杂度为O(m+n),但这种方...

牛客14496题解:括号最大深度问题(栈思想与代码优化)

牛客14496题解:括号最大深度问题(栈思想与代码优化)

一、题目解读牛客14496题要求计算给定括号字符串中的最大深度。例如,对于字符串 "(()())",最大深度为2。题目考察对括号嵌套结构的理解,以及如何通过编程找到最深嵌套层次。二...

力扣3112题解法:带时间限制的最短路径问题解析(C++代码)

力扣3112题解法:带时间限制的最短路径问题解析(C++代码)

一、题目解读力扣3112题要求解决带时间限制的最短路径问题:给定一个有向图,节点具有消失时间,需计算从起点到各节点的最短路径,且路径总时间不能超过节点的消失时间。题目难点在于需在传统最短路径算法(如D...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。