当前位置:首页 > 洛谷 > 洛谷P3365题解:二叉树与最长递增子序列的巧妙结合解决改造二叉树

洛谷P3365题解:二叉树与最长递增子序列的巧妙结合解决改造二叉树

3个月前 (08-27)

洛谷P3365题解:二叉树与最长递增子序列的巧妙结合解决改造二叉树 洛谷题解 二叉树构建 中序遍历 最长递增子序列 动态规划 树结构 第1张

一、题目解读

洛谷P3365题目要求给定一棵二叉树中序遍历结果及部分边信息,求解其节点值的最长非递增子序列长度。本质是将树结构转化为序列问题,通过动态规划求解关键路径。

二、解题思路

核心思想为:

1. 构建二叉:利用边信息(父节点与左右子节点关系)递归生成树结构;

2. 中序遍历:获取节点值序列,因中序遍历保证左子树→根→右子树的顺序;

3. LIS算法:通过动态规划计算序列的最长递增子序列(LIS)长度,其补集即为非递增子序列长度。

三、解题步骤

1. 输入处理:读取节点值数组vals及边信息edges;

2. 构建二叉树:通过buildTree函数,利用边关系连接节点;

3. 中序遍历:调用inorder递归函数,将节点值存入seq序列;

4. 计算LIS:使用lengthOfLIS函数,通过二分查找优化动态规划,返回LIS长度;

5. 输出结果:总节点数减去LIS长度即为答案。

四、代码与注释

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

// 构建二叉树
TreeNode* buildTree(int n, const vector<int>& vals, const vector<pair<int, int>>& edges) {
    vector<TreeNode*> nodes(n + 1);
    for (int i = 1; i <= n; ++i) {
        nodes[i] = new TreeNode(vals[i - 1]);
    }
    
    for (int i = 2; i <= n; ++i) {
        int fa = edges[i - 2].first;
        int ch = edges[i - 2].second;
        if (ch == 0) {
            nodes[fa]->left = nodes[i];
        } else {
            nodes[fa]->right = nodes[i];
        }
    }
    return nodes[1];
}

// 中序遍历收集节点值
void inorder(TreeNode* root, vector<int>& seq) {
    if (!root) return;
    inorder(root->left, seq);
    seq.push_back(root->val);
    inorder(root->right, seq);
}

// 计算最长递增子序列长度
int lengthOfLIS(vector<int>& nums) {
    vector<int> dp;
    for (int num : nums) {
        auto it = lower_bound(dp.begin(), dp.end(), num);
        if (it == dp.end()) {
            dp.push_back(num);
        } else {
            *it = num;
        }
    }
    return dp.size();
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    
    int n;
    cin >> n;
    
    vector<int> vals(n);
    for (int i = 0; i < n; ++i) {
        cin >> vals[i];
    }
    
    vector<pair<int, int>> edges(n - 1);
    for (int i = 0; i < n - 1; ++i) {
        cin >> edges[i].first >> edges[i].second;
    }
    
    TreeNode* root = buildTree(n, vals, edges);
    vector<int> seq;
    inorder(root, seq);
    
    int lis_len = lengthOfLIS(seq);
    cout << n - lis_len << endl;
    
    return 0;
}

五、总结

本解法关键在于中序遍历的特性与动态规划的结合。时间复杂度O(nlogn),空间复杂度O(n)。掌握此类转化思路,可高效应对树与序列相关的算法问题。

原创内容 转载请注明出处

分享给朋友:

相关文章

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

一、题目解读小杨买饮料是GESP 2023年六级认证考试中的一道经典动态规划题目,考察学生对背包问题的理解和应用能力。题目描述小杨需要购买n种饮料,每种饮料有特定的体积w和价格v,他要在不超过容量l的...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

一、题目解读题目要求在一个n×m的网格中,从左上角到右下角选择一条路径,路径上的数字可重复取用,求取数之和的最大值。路径限制为仅能向右或向下移动。需注意路径的灵活性与重复取数的可能性,传统单向动态规划...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

洛谷P4551题解题报告:图论与Trie树优化异或路径问题的实战解析

洛谷P4551题解题报告:图论与Trie树优化异或路径问题的实战解析

一、题目解读洛谷P4551题要求在一个无向图中,寻找任意两点路径权值异或后的最大值。题目输入为图的边信息(点数n和n-1条边),每条边包含起点、终点及权值。需输出所有路径中权值异或的最大值。问题核心在...

力扣931题最小下降路径和解析 动态规划解法 LeetCode解题技巧

力扣931题最小下降路径和解析 动态规划解法 LeetCode解题技巧

一、题目解读力扣931题「Minimum Falling Path Sum」(最小下降路径和)要求在一个n x n的整数矩阵中,计算从顶部到底部的最小路径和。路径只能从每个位置向下或对角线移动(即向下...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。