当前位置:首页 > 牛客 > 牛客网288555题解题指南:动态规划求解小红的暑假(附代码解析)

牛客网288555题解题指南:动态规划求解小红的暑假(附代码解析)

4周前 (06-21)

牛客网288555题解题指南:动态规划求解小红的暑假(附代码解析)  动态规划 组合计数 状态压缩 算法优化 第1张

一、题目解读

牛客网288555题要求解决一个组合数学问题:有三位朋友,每天需邀请其中一位参加聚会,但不能连续两天邀请同一位朋友。给定天数n,求满足条件的不同邀请方案总数。题目考察动态规划状态转移组合计数,属于中等难度算法题。

二、解题思路:动态规划 + 状态压缩

核心思想是将问题分解为子问题,利用动态规划记录中间状态。定义四维DP数组:dp[a][b][c][last],表示已邀请朋友1 a次、朋友2 b次、朋友3 c次,且最后一天邀请的是last(1/2/3)的方案数。通过状态转移方程枚举下一位朋友的选择,避免重复计数。

三、解题步骤

1. 初始化:第一天可选任意朋友,初始化dp[1][0][0][1]、dp[0][1][0][2]、dp[0][0][1][3]为1。

2. 状态转移循环:遍历所有可能的(a,b,c)组合,若当前状态dp[a][b][c][last]有效:

    枚举下一个朋友next(1/2/3),跳过与last相同的情况。

    更新次数:na=a+(next=1), nb=b+(next=2), nc=c+(next=3)。

    若次数不超n,累加方案数:dp[na][nb][nc][next] += dp[a][b][c][last]。

3. 结果计算:最终方案为所有朋友均被邀请n次的状态总和,即dp[n][n][n][1] + dp[n][n][n][2] + dp[n][n][n][3](取模防止溢出)。

四、代码与注释

#include <iostream>
#include <vector>
#include <cstring>
using namespace std;

const int MOD = 1e9 + 7;   // 取模常数,防止结果溢出
const int MAX_N = 100;    // 最大天数限制

// dp[a][b][c][last] 表示选了a次朋友1,b次朋友2,c次朋友3,最后选的是last的方案数
int dp[MAX_N+1][MAX_N+1][MAX_N+1][4];

int main() {
    int n;
    cin >> n;          // 输入天数n

    memset(dp, 0, sizeof(dp));   // 初始化dp数组为0

    // 初始状态:第一天可选任意朋友
    dp[1][0][0][1] = 1;          // 选朋友1一次,最后为1
    dp[0][1][0][2] = 1;          // 选朋友2一次,最后为2
    dp[0][0][1][3] = 1;          // 选朋友3一次,最后为3

    for (int a = 0; a <= n; ++a) {
        for (int b = 0; b <= n; ++b) {
            for (int c = 0; c <= n; ++c) {
                if (a + b + c == 0) continue;  // 跳过全0状态(无效)

                for (int last = 1; last <= 3; ++last) {
                    if (dp[a][b][c][last] == 0) continue;  // 当前状态无效则跳过

                    // 尝试选择下一个朋友
                    for (int next = 1; next <= 3; ++next) {
                        if (next == last) continue;  // 避免连续选同一人

                        int na = a, nb = b, nc = c;
                        if (next == 1) na++;        // 更新次数
                        else if (next == 2) nb++;
                        else nC++;

                        if (na <= n && nb <= n && nc <= n) {
                            // 累加方案数(取模)
                            dp[na][nb][nc][next] = (dp[na][nb][nc][next] + dp[a][b][c][last]) % MOD;
                        }
                    }
                }
            }
        }
    }

    // 最终结果是所有朋友都被选n次的总和
    int result = 0;
    for (int last = 1; last <= 3; ++last) {
        result = (result + dp[n][n][n][last]) % MOD;  // 取模求和
    }

    cout << result << endl;
    return 0;
}

五、总结

本题通过动态规划巧妙解决组合限制问题,关键在于四维状态设计(次数+末尾选择)和转移条件的严谨性。优化点包括利用取模运算避免大数溢出,以及跳过无效状态提升效率。掌握此类状态压缩技巧,可应对更多复杂计数问题。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣53题:贪心策略与动态规划的完美联姻 三行代码映射算法精髓

力扣53题:贪心策略与动态规划的完美联姻 三行代码映射算法精髓

题目理解在数字的海洋中寻找最具价值的珍珠链:当我们面对一个可能包含正负数的数组时,寻找连续子数组的和最大值就像在波动的股票曲线中捕捉最佳投资时段。问题的核心在于如何处理可能降低总和的负值元素——是忍痛...

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

一、题目解读题目要求在一个n×m的网格中,从左上角到右下角选择一条路径,路径上的数字可重复取用,求取数之和的最大值。路径限制为仅能向右或向下移动。需注意路径的灵活性与重复取数的可能性,传统单向动态规划...

NOIP 2008火柴棒等式题解(C++代码实现)  动态规划与枚举算法详解

NOIP 2008火柴棒等式题解(C++代码实现) 动态规划与枚举算法详解

一、题目解读火柴棒等式问题(NOIP 2008,洛谷P1149)要求使用给定数量的火柴棒,构造形如 A + B = C 的等式,其中A、B、C均为整数,且火柴棒总数恰好等于输入值。需统计符合条件的等式...

CSP-J 2019公交换乘题解析:基于队列优化的动态规划代码详解

CSP-J 2019公交换乘题解析:基于队列优化的动态规划代码详解

一、题目解读CSP-J 2019年的“公交换乘”题目(洛谷P5661)要求模拟地铁与公交交替出行的费用计算。题目核心在于地铁消费会产生优惠券,而公交可在45分钟内使用优惠券抵扣车费。需要处理n条出行记...

【蓝桥杯2015省赛解析】生命之树:树形DP解题全攻略(洛谷P8625代码详解)

【蓝桥杯2015省赛解析】生命之树:树形DP解题全攻略(洛谷P8625代码详解)

一、题目解读    “生命之树”是一道经典的树形结构问题,要求计算一棵带权树中,以某个节点为根的最大子树权值和。题目输入为n个节点及边信息,每个节点有权值wi,...

2023年GESP五级题「因式分解」洛谷B3871算法解析与代码实现

2023年GESP五级题「因式分解」洛谷B3871算法解析与代码实现

一、题目解读2023年GESP五级题「因式分解」(洛谷B3871)要求将给定的大整数N分解为质因数的乘积形式,并输出每个质因数及其指数。题目考察核心算法为质因数分解,需高效处理大数分解,避免超时。难点...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。