当前位置:首页 > 力扣 > 力扣1884题:动态规划解决鸡蛋掉落问题

力扣1884题:动态规划解决鸡蛋掉落问题

4个月前 (08-04)

力扣1884题:动态规划解决鸡蛋掉落问题 动态规划 力扣题解 状态转移方程 C++ 第1张

一、题目解读

力扣1884题要求解决经典的“鸡蛋掉落”问题:给定一座n层楼,你有2个鸡蛋,需要找出在最坏情况下,用最少次数确定鸡蛋摔不碎的最高楼层。题目核心在于通过二分或动态规划策略,优化测试次数,避免盲目尝试。

二、解题思路

采用动态规划策略。定义状态dp[k][m]为k个鸡蛋在m次投掷中能确定的最大楼层数,由于鸡蛋数量固定为2,代码简化了维度。通过迭代次数m,逐步计算每个状态值,直至满足dp[2][m] >= n。关键在于状态转移方程的推导:每次投掷后,鸡蛋可能碎(剩余k-1个鸡蛋和m-1次机会)或不碎(保持k个鸡蛋和m-1次机会),总楼层数为两种情况覆盖范围之和加当前测试楼层。

三、解题步骤

1. 初始化:创建二维dp数组(2个鸡蛋,最大n次投掷),初始值全为0。

2. 循环终止条件:当dp[2][m]首次大于等于n时停止迭代。

3. 状态转移计算:

    外层循环m递增,内层遍历k(1到2)。

    状态方程:dp[k][m] = dp[k-1][m-1](碎)+ dp[k][m-1](不碎)+ 当前层。

4. 结果返回:最终m即为最少投掷次数。

四、代码与注释

class Solution {
public:
    int twoEggDrop(int n) {
        // dp[k][m] = n 表示k个鸡蛋扔m次最多可以确定的楼层数
        // 对于本题,k固定为2
        int eggs = 2;
        vector<vector<int>> dp(eggs + 1, vector<int>(n + 1, 0));
        
        int m = 0;
        while (dp[eggs][m] < n) {
            m++;
            for (int k = 1; k <= eggs; k++) {
                // 状态转移方程:
                // 如果在某层扔鸡蛋,有两种可能:
                // 1. 鸡蛋碎了,那么需要检查下面的楼层,用k-1个鸡蛋和m-1次机会
                // 2. 鸡蛋没碎,可以检查上面的楼层,用k个鸡蛋和m-1次机会
                // 所以总楼层数为两种情况之和加1(当前测试的楼层)
                dp[k][m] = dp[k - 1][m - 1] + dp[k][m - 1] + 1;
            }
        }
        
        return m;
    }
};

注释说明:代码通过动态规划构建状态转移矩阵,利用鸡蛋碎与不碎的两分支情况,逐步扩大可覆盖楼层数,最终确定最小测试次数。

五、总结

本文通过动态规划方法解析力扣1884题,核心在于将问题分解为子状态,并通过状态转移方程高效计算。关键点包括:

1. 明确状态定义(dp[k][m]的多维度含义);

2. 推导碎与不碎的两分支决策影响;

3. 利用迭代避免递归性能损耗。

该思路对类似“资源受限的最优决策”问题具有通用性。




原创内容 转载请注明出处

分享给朋友:

相关文章

力扣第1991题:寻找数组的中心索引 如何找到左右和相等的中心索引

力扣第1991题:寻找数组的中心索引 如何找到左右和相等的中心索引

题目解读给定一个整数数组,我们需要找到一个中心索引,使得该索引左侧所有元素的和等于右侧所有元素的和。如果不存在这样的索引,则返回-1。中心索引的定义不包含在左右两侧的和计算中。这个问题考察对数组遍历和...

力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密

力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密

一:重新解读题目泰波那契数列是一个充满数学趣味的递推序列:从第3项开始,每个数均为前三个数的和(即Tₙ₊₃ = Tₙ + Tₙ₊₁ + Tₙ₊₂)。当给定整数n时,需要高效计算出第n项的值。面对此类递...

征服力扣704题:三步掌握经典二分查找算法

征服力扣704题:三步掌握经典二分查找算法

题目重解我们面对的是算法领域最经典的二分查找问题:在一个已排序的整数数组中,快速定位目标值的位置。就像在一本按字母顺序排列的字典中查找单词,我们不需要逐页翻阅,而是通过不断折半的方式快速缩小搜索范围,...

力扣933题:队列的妙用:如何高效统计最近请求

力扣933题:队列的妙用:如何高效统计最近请求

题目重解:我们需要设计一个能统计最近3000毫秒内请求次数的系统。每当新的请求到来时,它会带有时间戳t,我们需要返回过去3000毫秒内(包括当前)发生的请求总数。这就像是在时间轴上维护一个滑动窗口,只...

IOI 1994 洛谷1216:如何用O(1)空间解决数字三角形问题?附代码实现

IOI 1994 洛谷1216:如何用O(1)空间解决数字三角形问题?附代码实现

题目重解:数字三角形是一个经典的动态规划问题,给定一个由数字组成的三角形结构,从顶部出发,每次可以移动到下方相邻的数字,最终到达底部。我们需要找到一条路径,使得路径上经过的数字总和最大。这个问题可以很...

力扣144:递归之美 轻松掌握二叉树前序遍历

力扣144:递归之美 轻松掌握二叉树前序遍历

题目解读二叉树的前序遍历是一种基础但重要的树遍历方式,其遍历顺序为:先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。给定一个二叉树的根节点,我们需要按照这个顺序访问所有节点,并将它们...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。