当前位置:首页 > 牛客 > 牛客25461题解析:花园喷泉距离优化算法(动态规划+后缀数组解法)

牛客25461题解析:花园喷泉距离优化算法(动态规划+后缀数组解法)

4周前 (06-20)

牛客25461题解析:花园喷泉距离优化算法(动态规划+后缀数组解法)  动态规划 后缀数组 距离优化 第1张

一、题目解读

牛客25461题要求计算一个花园中n朵花到两个喷泉的最小距离平方和。用户需输入喷泉坐标(x1,y1)和(x2,y2),以及n朵花的坐标(x,y),通过合理分配每朵花到两个喷泉的距离,使总距离平方和最小。题目核心在于如何高效划分花与喷泉的归属,降低计算复杂度。

二、解题思路

采用“预处理排序+后缀最大值”的动态规划策略:

1. 距离平方计算:为避免浮点数误差,直接使用点到喷泉距离的平方(dx²+dy²)。

2. 优化关键:将花按到喷泉1的距离d1升序排序,使分割点左侧的花固定归属喷泉1,右侧花归属喷泉2。

3. 后缀数组:预处理后缀最大值数组,存储每个位置右侧花到喷泉2的最小距离平方和。

4. 遍历分割:枚举每个分割点,左侧总和为当前花的d1,右侧总和取自后缀最大值,动态更新最小和。

三、解题步骤

1. 输入处理:读取n、喷泉坐标及花朵坐标,计算每朵花的距离平方存入Flower结构。

2. 预处理排序:按d1对Flower数组升序排序,确保分割点左侧d1递增。

3. 构建后缀最大值数组:从右向左遍历,维护后缀中d2的最大值,形成后缀数组。

4. 动态求解:遍历分割点i,计算当前花d1+后缀数组[i+1]的和,更新全局最小值。

5. 输出结果:打印最小总距离平方和。

四、代码及注释

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct Flower {
    long long d1, d2; // 到两个喷泉的距离平方
};

int main() {
    int n, x1, y1, x2, y2;
    cin >> n >> x1 >> y1 >> x2 >> y2;
    
    vector<Flower> flowers(n);
    for (int i = 0; i < n; ++i) {
        int x, y;
        cin >> x >> y;
        // 计算到两个喷泉的距离平方(避免浮点运算)
        long long dx1 = x - x1, dy1 = y - y1;
        long long dx2 = x - x2, dy2 = y - y2;
        flowers[i].d1 = dx1*dx1 + dy1*dy1;
        flowers[i].d2 = dx2*dx2 + dy2*dy2;
    }
    
    // 预处理:按d1升序排序
    sort(flowers.begin(), flowers.end(), 
        [](const Flower& a, const Flower& b) {
            return a.d1 < b.d1;
        });
    
    // 预处理后缀最大值数组
    vector<long long> suffix_max(n+1, 0);
    for (int i = n-1; i >= 0; --i) {
        suffix_max[i] = max(flowers[i].d2, suffix_max[i+1]);
    }
    
    long long min_sum = suffix_max[0]; // 初始化为全部由喷泉2覆盖的情况
    
    // 遍历所有可能的分割点
    for (int i = 0; i < n; ++i) {
        long long current_sum = flowers[i].d1 + suffix_max[i+1];
        min_sum = min(min_sum, current_sum);
    }
    
    cout << min_sum << endl;
    return 0;
}

五、总结

本解法巧妙结合排序与动态规划思想,通过预处理将二维决策转化为线性遍历,时间复杂度降至O(nlogn+O(n))=O(nlogn)。后缀最大值数组的应用避免了重复计算右侧距离和,显著提升了效率。对于类似需要划分区域并优化子区间的问题,该思路具备较强参考价值。后续可进一步探索空间优化或并行计算的可能。


参考:贪心算法

原创内容 转载请注明出处

分享给朋友:

相关文章

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

牛客12576题解题全解析:动态规划+质因数分解实现跳跃问题最优解

一、题目解读牛客12576题是一道经典的算法题,要求给定起点N和终点M,求解从N到M的最少跳跃次数。题目考察的核心在于路径优化与动态规划思想,需结合数论中的质因数分解技巧,通过合理设计算法降低时间复杂...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

【蓝桥杯2015省赛解析】生命之树:树形DP解题全攻略(洛谷P8625代码详解)

【蓝桥杯2015省赛解析】生命之树:树形DP解题全攻略(洛谷P8625代码详解)

一、题目解读    “生命之树”是一道经典的树形结构问题,要求计算一棵带权树中,以某个节点为根的最大子树权值和。题目输入为n个节点及边信息,每个节点有权值wi,...

洛谷P4999题解析:动态规划求解数字拆分与求和问题(附代码)

洛谷P4999题解析:动态规划求解数字拆分与求和问题(附代码)

一、题目解读洛谷P4999题要求处理给定区间 [L, R] 内数字的拆分与求和问题。每个数字需拆分为其各位数字之和,并计算区间内所有数字之和的累加结果。题目需考虑大数情况,并采用取模运算(MOD=1e...

【蓝桥杯国赛A组】冰山体积计算:动态规划与map统计的解题方案(洛谷P8767)

【蓝桥杯国赛A组】冰山体积计算:动态规划与map统计的解题方案(洛谷P8767)

一、题目解读本题为2021年蓝桥杯国赛A组题目“冰山”(洛谷P8767),要求处理冰山在融化与新生成过程中的体积变化。每日存在两种操作:冰山体积按固定值x融化(体积不足x的部分视为完全融化),以及新增...

牛客4580题解:动态规划求解网格路径概率问题(C++代码实现)

牛客4580题解:动态规划求解网格路径概率问题(C++代码实现)

一、题目解读牛客4580题要求在一个n×m的网格中计算从起点(1,1)到终点(n,m)的概率。网格中存在障碍物(标记为坏点),路径只能向右或向下移动。到达终点时,若处于边界位置,概率转移规则不同:下边...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。