当前位置:首页 > 牛客 > 牛客4580题解:动态规划求解网格路径概率问题(C++代码实现)

牛客4580题解:动态规划求解网格路径概率问题(C++代码实现)

4周前 (06-23)

牛客4580题解:动态规划求解网格路径概率问题(C++代码实现) 动态规划 概率计算  第1张

一、题目解读

牛客4580题要求在一个n×m的网格中计算从起点(1,1)到终点(n,m)的概率。网格中存在障碍物(标记为坏点),路径只能向右或向下移动。到达终点时,若处于边界位置,概率转移规则不同:下边界时向右概率为0.5,右边界时向下概率为0.5,普通位置则各方向概率均为0.5。题目需要输出最终到达终点的概率,保留两位小数。

二、解题思路

该题目采用动态规划(DP)求解。核心思想是将问题分解为子问题,通过递推计算每个位置到达终点的概率。定义状态dp[i][j]为从起点到位置(i,j)的概率。根据路径规则,每个位置的概率由上方和左方位置的概率推导而来,需特殊处理边界和障碍物情况。通过遍历网格,逐步更新状态值,最终得到终点概率。

三、解题步骤

1. 输入处理:读取网格大小n、m及坏点数量k,标记坏点位置(bad数组)。

2. 初始化:起点概率dp[1][1]设为1,其他位置初始为0。

3. 状态转移

○ 若当前位置为坏点,概率置0;

○ 若为终点,概率由上方和左方概率相加;

○ 若为下边界,上方概率1 + 左方概率0.5;

○ 若为右边界,上方概率 + 左方概率*0.5;

○ 普通位置则上方0.5 + 左方0.5。

4. 输出结果:固定小数点后两位输出dp[n][m]。

四、代码和注释

#include <iostream>
#include <vector>
#include <iomanip>
using namespace std;

int main() {
    int n, m, k;
    while (cin >> n >> m >> k) {  // 处理多组数据
        vector<vector<bool>> bad(n+1, vector<bool>(m+1, false));  // 标记坏点
        vector<vector<double>> dp(n+1, vector<double>(m+1, 0.0));  // 概率DP数组
        
        // 标记蘑菇位置
        while (k--) {
            int x, y;
            cin >> x >> y;
            bad[x][y] = true;  // 标记为坏点
        }
        
        dp[1][1] = 1.0;  // 起点概率为1
        
        for (int i = 1; i <= n; ++i) {  // 行遍历
            for (int j = 1; j <= m; ++j) {  // 列遍历
                if (i == 1 && j == 1) continue;  // 跳过起点
                if (bad[i][j]) {  // 坏点概率置0
                    dp[i][j] = 0.0;
                    continue;
                }
                
                // 处理边界情况
                if (i == n && j == m) {  // 终点
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                } else if (i == n) {  // 下边界
                    dp[i][j] = dp[i-1][j] * 0.5 + dp[i][j-1];
                } else if (j == m) {  // 右边界
                    dp[i][j] = dp[i-1][j] + dp[i][j-1] * 0.5;
                } else {  // 普通位置
                    dp[i][j] = dp[i-1][j] * 0.5 + dp[i][j-1] * 0.5;
                }
            }
        }
        
        cout << fixed << setprecision(2) << dp[n][m] << endl;  // 输出终点概率
    }
    return 0;
}

五、总结

本题关键在于动态规划的状态定义与边界条件的处理。通过明确概率转移规则,结合网格遍历,高效计算出终点概率。代码中利用bad数组标记障碍物,避免了无效路径的计算,而边界条件的特殊处理保证了概率推导的正确性。该解法具有清晰逻辑和良好可扩展性,适用于类似网格路径概率问题。

原创内容 转载请注明出处

分享给朋友:

相关文章

从零到一掌握背包问题:洛谷P1164题解精讲,附带优化

从零到一掌握背包问题:洛谷P1164题解精讲,附带优化

题目重解:小A带着m元钱来到餐馆,菜单上有n道菜,每道菜都有确定的价格。现在需要计算出刚好花完m元的点菜方案总数。这个问题看似简单,但当菜品数量增多时,暴力枚举就会变得不可行,需要更高效的算法来解决。...

洛谷P4551题解题报告:图论与Trie树优化异或路径问题的实战解析

洛谷P4551题解题报告:图论与Trie树优化异或路径问题的实战解析

一、题目解读洛谷P4551题要求在一个无向图中,寻找任意两点路径权值异或后的最大值。题目输入为图的边信息(点数n和n-1条边),每条边包含起点、终点及权值。需输出所有路径中权值异或的最大值。问题核心在...

【蓝桥杯2015省赛解析】生命之树:树形DP解题全攻略(洛谷P8625代码详解)

【蓝桥杯2015省赛解析】生命之树:树形DP解题全攻略(洛谷P8625代码详解)

一、题目解读    “生命之树”是一道经典的树形结构问题,要求计算一棵带权树中,以某个节点为根的最大子树权值和。题目输入为n个节点及边信息,每个节点有权值wi,...

洛谷P4999题解析:动态规划求解数字拆分与求和问题(附代码)

洛谷P4999题解析:动态规划求解数字拆分与求和问题(附代码)

一、题目解读洛谷P4999题要求处理给定区间 [L, R] 内数字的拆分与求和问题。每个数字需拆分为其各位数字之和,并计算区间内所有数字之和的累加结果。题目需考虑大数情况,并采用取模运算(MOD=1e...

力扣931题最小下降路径和解析 动态规划解法 LeetCode解题技巧

力扣931题最小下降路径和解析 动态规划解法 LeetCode解题技巧

一、题目解读力扣931题「Minimum Falling Path Sum」(最小下降路径和)要求在一个n x n的整数矩阵中,计算从顶部到底部的最小路径和。路径只能从每个位置向下或对角线移动(即向下...

牛客网288555题解题指南:动态规划求解小红的暑假(附代码解析)

牛客网288555题解题指南:动态规划求解小红的暑假(附代码解析)

一、题目解读牛客网288555题要求解决一个组合数学问题:有三位朋友,每天需邀请其中一位参加聚会,但不能连续两天邀请同一位朋友。给定天数n,求满足条件的不同邀请方案总数。题目考察动态规划、状态转移及组...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。